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Abstract

In this paper we compare G�p�� the Mellin transform �together with its analytic

continuation�� and G�p�� the related Hadamard �nite�part integral of a function g�x��
which decays exponentially at in�nity and has speci�ed singular behavior at the origin�
Except when p is a nonpositive integer� these coincide� When p is a large negative

integer� G�p� is well de�ned� but G�p� has a pole� We show that the terms in the Laurent
expansion about this pole can be simply expressed in terms of the Hadamard �nite�part
integral of a related function� This circumstance is exploited to provide a conceptually
uniform proof of the various generalizations of the Euler�Maclaurin expansion for the
quadrature error functional�

� The One�Dimensional Euler�Maclaurin Expansion

The prototype problem in numerical quadrature is that of approximating an integral

If �
Z �

�
f�x�dx �����

by a sum of function values of the form

Qf �
�X

i��

wif�xi�

and �nding expressions for the approximation error� An early expression of this type is
the Euler�Maclaurin expansion� which appeared �rst in the early eighteenth century� In its
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modern form this is an asymptotic expansion of the discretization error associated with the
��panel o	set trapezoidal rule
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The standard form of the Euler�Maclaurin asymptotic expansion� valid when f�x� is regular�
is
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where ��s� �� denotes the generalized zeta function� de�ned in ����� below� �When � � ��
this reduces to the more familiar Riemann zeta function ��s�� When s is a positive integer�

���s� �� � �B��s������ � s�� �����

where Bn�x� is the Bernoulli polynomial of degree n��
When f�x� is C�p���� ��� ����� may be expressed as a �nite sum of p terms� and the

remainder term� of order O���p���� has a simple integral representation�
An important extension of this expansion was discovered by Navot ������� This ap�

plied to a situation in which f�x� has an integrable algebraic singularity at an end of the
integration interval� When

f�x� � x�g�x�� �����

where � � �� and g�x� is C�p���� ��� the expansion ����� has to be modi�ed by replacing
the �rst sum by X

n��

g�n����

n


���n � �� ��

�n����
�

Navot�s proof is lengthy� During subsequent years� shorter proofs have appeared from time
to time� Straightforward corollaries of Navot�s result provide asymptotic expansions for
integrand functions having algebraic�logarithmic singularities at one end and for integrand
functions having this sort of singularity at both ends of the integration interval�

A second important extension was discovered by Ninham ������� Ninham showed that
Navot�s expansion is valid as written for functions de�ned by ����� when � takes any value
other than a negative integer� For � 	 ��� the integral If must be de�ned as a Hadamard
�nite�part integral� See Lemma ��� below� Ninham�s proof is long�

Completing this set of results is the expansion when � is a negative integer �Lyness
������ This resembles Navot�s expansion in form� however� the coe�cients are di	erent�
and an additional term in log� has to be included�

The present paper is devoted to a general proof of the one�dimensional Euler�Maclaurin
expansion� This proof� based on the Mellin transform� embraces all of the cited variants
in a single proof� It is based on a recently discovered approach due to Verlinden �������
�See also Verlinden and Haegemans ������ In this paper� that approach is extended to
hypersingular integrals�

In Sections � and � we collect results about Hadamard �nite�part integrals and Mellin
transforms� which we denote by

G�p� �
Z �

�
� g�x�xp��dx and G�p� �

Z �

�
g�x�xp���

�



respectively� We treat functions g�x� that decay at in�nity faster than any power of x�

Except at the poles of the Mellin transform� both G�p� and G�p� are analytic and coincide�
Section � includes a treatment in the p�plane of the singularities of the Mellin transform� We
show that the coe�cients in the Laurent expansion of G�p� about a pole may be expressed
as the Hadamard �nite�part integral of a related function� In Sections � and � these results
are applied in a straightforward manner to obtain various versions of the Euler� Maclaurin
asymptotic expansion�

A refreshing feature of this theory is that it treats all cases in a fundamentally uniform
way� The di	erent expansions arise simply because the residues at poles in the complex
p�plane of the Mellin transform F �p� of f�x� � x�g�x� are of a marginally di	erent form
when � is a negative integer than otherwise� and the log� term arises for negative integer �
since a pole of F �p� then coincides with a pole of the zeta function� The di	erences between
these various expansions arise in this theory simply as a result of a technical di	erence in
the formula required to calculate a set of residues�

Interesting but unrelated work on the evaluation of Hadamard �nite�part integrals has
recently appeared �Elliott and Venturino ������

� The Hadamard Finite Part Integral

In this section we recall some of the standard Hadamard theory of the �nite�part integral
for the �nite interval �Hadamard ����� and apply it to semi�nite integrals for a class of
rapidly decaying functions�

We shall be interested� almost exclusively� in integrands having moderate continuity
over a semi �nite interval� say� ������ At the lower end� the worst singularity is algebraic�
logarithmic� that is� x� logk x� while at the upper limit� the integration properties are benign�
�See De�nition �����

For our purposes� the following de�nition is adequate�

De�nition ��� Let f�x� be integrable over �
� b� for any 
 satisfying � 	 
 	 b 	 ��
Suppose there exists a strictly monotonic increasing sequence �� 	 �� 	 �� 	 � � � and a
nonnegative integer J such that the expansion

Z b
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�X
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�i logj 


converges for all 
 � ��� h� for some h � �� Then the corresponding Hadamard �nite�part
integral may be de�ned as follows�

Z b

�
� f�x�dx �� II���b� when �I � �

�� � when �i �� � for all i�

Some of the simpler special cases of this de�nition are listed in Lemmas ���� ���� and ����
For much of the work in this paper� these lemmas together form an adequate de�nition�

�



Lemma ��� For b � ��

Z b

�
� x�dx ��

�
log b when � � ���
b������� �� otherwise�

This may be extended to su�ciently regular functions as follows�

Lemma ��� Let � � �� and m � �� � � and g�x� � C�m������ b�� Then for b � �
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The �rst integral on the right�hand side is a standard integral� The rest of this expression
involves Lemma ��� in order to de�ne the �nite�part integrals� Clearly� except when � is a
negative integer� the function de�ned in ����� is analytic in ��

We shall be interested in a class of functions g�x� whose decay rate at in�nity exceeds
that of any inverse power of x�

De�nition ��� An �allowable� function g�x� of class C�m�������� is one for which����
Z �

�
g�k��x�xp��dx

���� 	�� k � �� �� � � � � m� ��

for all p � ��

Lemma ��� When g is an allowable function in C�m�������� and f�x� � x�g�x��

Z �
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� f�x�dx ��

Z b

�
� f�x�dx�

Z �

b
f�x�dx�

Notice that this de�nition is independent of b � �� Moreover� we haveZ �

�
� x�dx � �� �� 	 ��� �����

Theorem ��� follows immediately from Lemmas ��� and ����

Theorem ��� When g�x� is an allowable function in C�m��������� m � �� the function

G��� ��

Z �

�
� g�x�x���dx �����

is analytic in � for Re � � �m� except at nonpositive integer values of ��

In fact� with the important exception of these integer values of �� G��� is the analytic
continuation of Z �

�
g�x�x���dx� Re � � ��

�



and coincides with the Mellin transform G��� de�ned in ����� below�
Our �rst nontrivial theorem will concern integration by parts� When g�x� is C�m������ b�

and m � �� we have
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In the limit as 
 tends to zero� in general neither integral exists� However� we can provide
an expansion of the type needed in De�nition ��� if we note that
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We apply that de�nition to the integral obtained from amalgamating the two integrals in
������ Then� in view of theexpansion ������ we have
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It is interesting to note that for the marginally more complicated situation in which logk x
also occurs in the integrand� no term corresponding to g�m�����m�m
 in ����� occurs� Thus�
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The cases in which k � � have been treated above� When k � � and m � �� we have
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Z b
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and� in all cases speci�ed in the two preceding equations� all terms in the expansion in terms
of 
 arising from the lower limit of the �nal term on the right contain log 
 as a factor�

We are interested in the case in which b becomes in�nite� With this in view� we need a
restriction on g�x� so that the various integrals continue to exist and other terms involving
b have proper limits� A simple consequence of g�x� being an allowable function of class
C�m�������� is that g��x� is one of class C�m������� In view of this� we may write down
our principal theorem�

Theorem ��	 When g�x� is an allowable function of class C�m��������� we have
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and� when k � ��
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The importance of this theorem is twofold� First� it pinpoints an unexpected term g�m�����m�m
�
which occurs in the �rst relation in this theorem� Second� it justi�es in many cases a process
of integration by parts applied directly to Hadamard �nite�part integrals�

Theorem ��
 When g�x� is an allowable function in C�m��������� m � ��
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where ��z� � ���z����z��

Proof� This is a simple consequence of Theorem ���� Let us apply the �rst member of
����� iteratively m times� We �nd
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Simplifying this and applying the second member of ����� gives ������ above directly� We
have used the relation

�
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This is a standard property of ��z�� the logarithmic derivative of the gamma function� and
is given� for example� in Abramowitz and Stegun������ on page ����

�

� The Mellin Transform

The conventional de�nition is as follows�

De�nition ��� Given a function f�x�� its Mellin transform F �p� is de�ned as

F �p� �
Z �

�
f�x�xp��dx �����

for all values of p for which this integral exists�

It is well known that F �p� is an analytic function� Equally well known is the inversion
formula

f�x� �
�

��i

Z c�i�

c�i�
F �p�x�pdp� �����

�



where the contour of integration may be taken to be along the line Re p � c� where c is any
value of p for which the integral on the right in ����� exists�

We now treat

G�p� �
Z �

�
xp��g�x�dx� p � �� �����

the Mellin transform of an allowable function g�x�� This integral representation G�p� is valid
when p � � where the integral converges� When p � �� this integral diverges and de�nes
nothing� However� G�p� is an analytic function of p and can be continued into Re p � ��
To investigate this� we proceed as follows� Setting p to some positive number� we integrate
by parts to obtain

G�p� �
xpg�x�

p

����
�

�
�

Z �

�

g��x�xp

p
dx�

Since p � � and xpg�x� vanishes at�� the �rst term on the right disappears� Iterating this
procedure n times gives

G�p� �
����n��

p�p� ���p� �� � � ��p� n�

Z �

�
g�n����x�xp�ndx� �����

The right�hand side is an analytic function of p in all Re p � �n � � except at isolated
poles p � ����� � � �� n� Since this analytic function coincides with G�p� when Re p � �� it
represents its continuation into Re p � ��n� �� ��� It is trivial to note from ����� that G�p�
has a simple pole at p � �n� with residue

Res�G�p��p � �n� �
��

n
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g�n����x�dx �

g�n����

n

� �����

Theorem ��� Let g�x� be an allowable function in C�������� and G�p� be its Mellin
transform� Then G�p� has an analytic continuation for all p� except for simple poles at
p � �������� � � ��

To obtain the early terms in the Laurent expansion� we seek an expansion of G��n� 
�
in powers of 
� Direct substitution of p � �n� 
 in ����� gives
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We may use

x� � e� log x � � � 
 log x�
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 log x��
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and an expansion of the form
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to establish formulas for the individual terms of the Laurent expansion in terms of the

coe�cients C
�n�
j � Recurrence relations for these coe�cients are given later in ������ and

������� It is trivial to verify that

C
���
j � �� C
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and
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f��n� ��� ����g� �n � �� ������

Carrying out this process� we �nd

G��n� 
� � b
�n�
���
 � b

�n�
� � b

�n�
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� � � � � ������

where

b
�n�
�� � g�n�����n
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g�n����x� logi x dx� k � �� ������

The theory given above may be used to provide critical information about the poles and
Laurent expansions of the Mellin transform F �p� of the function f�x� � x�g�x�� Clearly�
when f and g are related in this way� their Mellin transforms satisfy

F �p� �� � G�p��

In view of this� we �nd the somewhat trite corollary�

Corollary ��� Let g�x� be an allowable function in C��������� When f�x� � x�g�x�� its
Mellin transform F �p� has poles at p � �� � n �n � �� �� �� � � �	� The Laurent expansion
F ��� � n� 
� coincides precisely with the right�hand side of �
���	 above�

This result is used in the later sections of this paper and extensively in forthcoming
work on multidimensional quadrature�

Setting k � � in ������� we �nd that

b
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g�m����x� logxdx�

��m� ��� ����

m

g�m�����

This coincides with the Hadamard �nite�part integral given in ������� We shall now prove

that all coe�cients b
�n�
j have equally simple integral representations�

Theorem ��� Under the hypotheses of Theorem 
��� the Laurent expansion coe
cients

b
�n�
k of �
���	 are given by

b
�n�
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k
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g�x� logk x

xn��
dx� �k� n � �� ������

Throughout the proof� which is manipulative� we shall use the abbreviation

Hj�i ��
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i
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g�n�j����x� logi x

xj
dx� ������

In view of expression ������� in order to establish ������� we must show

Hn���k � �
k��X
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C
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As a preliminary� we establish two lemmas�
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Lemma ���

Hn���k � �
H��k��
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nX
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n

Hi���k��� ������

Proof� This is based on the two members of ������ above� When we apply each of these
relations to the function g�n�m��x�� m being the parameter in ������� we may express the
result in the form

Hm���� �
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m
Hm������ �

�

m
Hm��� m� 
 � �� ������

H��� � �H������ 
 � �� ������

Let us multiply each member of ������ by m
�n
 and sum the resulting equation over
index m � ��� n�� We �nd immediately
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nX
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� ������

The summation on the left coincides� term by term� with the �nal summation on the right�
Removing these terms and using ������ reduces ������ to ������� establishing Lemma ����
�

The second lemma we need is a relation between the coe�cients C
�i�
� de�ned in ������

Lemma ���
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Proof� We �rst establish a recursion relation ������� This may be used to calculate numer�

ical values of C
�n�
j recursively starting with the values of C

���
j and C
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� given in ����� and

������� Using the identity ��m� �� 
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Applying expansion ����� to each quotient of gamma functions� we �nd
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�X
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C
�m���
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Examination of the coe�cient of 
j in this relation gives

mC
�m�
j � C

�m�
j�� � C

�m���
j � j � �� ������
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To establish the lemma� we multiply each element in ������ by �m� ��
 and sum over index
m���� n�� Then

nX
m��

m
C
�m�
j �

nX
m��

�m� ��
C
�m�
j�� �

n��X
m��

m
C
�m�
j �

The �rst n� � terms in the �rst summation coincide with the �nal n� � terms in the third
summation� Removing the common terms leaves ������ as written� �

We now proceed to the proof of Theorem ���� which is by induction�

Proof� �of Theorem ����� We wish to establish that

Hi�� � �
���X
j��

C
�i���
��j��H��j i � �� �� � � � � ������

with � � k� In Theorem ���� we established this for all i�� with � � �� Thus� we may use
that as a basis for induction on �� assume that ������ is valid for � � ��� k� �� and derive
the same result for � � k� To this end� we invoke Lemma ��� and substitute for Hi�k��

using ������� We �nd

Hn���k �
H��k��

n

�

nX
i��

�i� ��


n

Hi���k��

� �
nX

i��

kX
j��

�i� ��


n

C

�i�
k�jH��j

� �
kX

j��

C
�n�
k�j��H��j�

This �nal equality results from Lemma ��� with 
 � k � j� Since C
�n�
� � ��n
� the second

term on the left may be treated as the �k � ��th element of the sum on the right� This
establishes ������� which is an abbreviated statement of Theorem ���� �

� Quadrature Error Expansions for the Semi�nite Interval

�����

Our ultimate purpose is to obtain expansions such as ����� for the discretization error of an
o	set trapezoidal rule over a �nite interval ������ The major part of the derivation appears
in this section� where corresponding expansions for the semi�nite interval are established� A
straightforward subtraction procedure to obtain expansions for the �nite interval is given in
the next section� Following Verlinden ������� we denote an o	set trapezoidal rule operator
for the semi�nite interval by

S�f��� �
�

�

�X
k��

f

�
� � k

�

�
� �����

��



It follows immediately from the Mellin inversion formula ����� that

f

�
x� k

�

�
�

�

��i

Z c�i�

c�i�
F �p�

�
x� k

�

��p
dp� �����

Substituting this into ����� and inverting the order of summation and integration� we �nd

S�f��� �
�

��i

Z c�i�

c�i�
F �p���p� ���p��dp� �����

Here we have used a standard de�nition of the Riemann zeta function� namely

��p� x� �
�X
k��

�x� k��p� x � ��� ��� �����

Since F �p� is the Mellin transform ����� of f�x�� it follows that c in ����� may take any
value of p for which the integral on the right of ����� exists� We shall be applying this result
only in cases where f�x� is an allowable function� or closely related to one� and no problem
in �nding a suitable value of c is encountered�

Formula ����� is of wide validity� being meaningful whenever f�x� is such that its Mellin
transform ����� exists for any value of p� We now specialize to functions f�x� of the form

f�x� � x�g�x�� �����

where g�x� is an allowable function� Note that we need not at the moment restrict � in any
way� Recalling that F �p� � G���p�� one may readily show that the expression on the right
in ����� is O��c��� as � 	 �� Consequently� we may displace the contour in ����� to the
left from Re p � c to Re p � c� so long as we include the sum of residues of the integrand
at poles in the strip Re p � �c��� c��� This process introduces a �nite set of residue terms�
but replacing c by c� in the integral reduces its order from O��c��� to O��c

�����
These poles occur at p � �� where the zeta function has a simple pole and at p � ���n

n � �� �� �� � � �� at each of these points F �p� has a simple pole� When � is not a negative
integer� all these poles are distinct� When � is a negative integer� the pole of F �p� with
n � ��� � coincides with the pole of the zeta function resulting in a pole of order � of the
integrand function at this point�

We deal �rst with the case in which the poles are distinct� It is well known that

Res���p� x��p � �� � �� �����

and in view of ������ we have

Res�F �p��p � �n � �� � g�n�����n
� �����

This gives the following theorem�

��



Theorem ��� Let f�x� � x�g�x�� let g�x� be allowable in C�N��������� and let � not be
a negative integer� Then�

S�f��� �
�

��i

Z c�i�

c�i�
F �p���p� ���p��dp

� F ��� �
NX
n��

g�n����

n


���n� �� ��

�n����
�����

�
�

��i

Z c��i�

c��i�
F �p���p� ���p��dp�

where N is a nonnegative integer� c � � � �� c� � ��N � �� ���N � � � ��� and F �p� is
the �analytic continuation of the	 Mellin transform of f�x� �in the p�plane	�

Our immediate task is to identify F ���� When � � ��� the integral representation in
De�nition ��� exists� giving

F ��� �

Z �

�
f�x�dx�

When � 	 ��� F ��� is the analytic continuation of F �p�� which exists for higher values of
p� Since � is not a negative integer� we may invoke Theorem ��� to give

F ��� �
Z �

�
� f�x�dx� �����

There remains the case in which � is a negative integer� The expansion ����� is based on
the assumption that all the poles of the integrand function in ����� are distinct and simple
and their residues given by ����� and ������ When � is a negative integer� the poles for
n �� �� � � are unchanged in character� However� there is a pole of order � at p � �� We
need to make a technical adjustment to ����� replacing F ��� and the term in the sum with
n � �� � � by the residue of F �p���p� x��p�� at p � �� The calculation of this residue is
straightforward but tedious� Brie�y� we require the coe�cient of 
�� in the expansion of
F ��� 
����� 
� x���� Using the result of Corollary ��� with n � � and setting m � �����
a nonnegative integer� we �nd

F �� � 
� �
�




g�m����

m

�

Z �

�
� f�x�dx�O�
��

In view of the standard expansions

��� � 
� x� �
�



� ��x� �O�
��

�� � e� log� � � � 
 log� �O�
���

we �nd immediately that the required coe�cient is

Z �

�
� f�x�dx�

g�m����

m

���� �

g�m����

m

log��

Replacing the two terms mentioned above leads to a variant theorem�

��



Theorem ��� When � is a negative integer� Theorem ��� is valid as written except that�
in the expansion ����	 the term with n � m � ��� � is omitted from the sum and replaced
by

�
g�m����

m

���� �

g�m����

m

log��

as before� F ��� remains the �nite�part integral ����	�

� Quadrature Error Expansions for the Finite Interval ��� ��

The results of the preceding section are expansions for the in�nite sum

S�f��� �
�

�

�X
j��

f

�
j � �

�

�
�

where f�x� � x�g�x� and g�x� is an allowable function� In this section we exploit those ex�
pansions to obtain corresponding results pertaining to a �nite interval ����� and a quadrature
rule


S�f��� �
�

�

���X
j��

f

�
j � �

�

�
�

This is a discretization of the �nite integral
R �
� f�x�dx� We shall treat three cases� f�x� has

no singularities� has a singularity at one end of the interval� and has singularities at both
ends�

De�nition ��� A neutralizer function ��x� ��� ��� with �� � �� is a function satisfying

��x� � � x � ���

��x� � � x � ���

��x� � C��������

Example�

��x� �
�

�

	
� � tanh

�
�

�� � t
�

�

t� ��

�

� t � ���� ����

A familiar result is the following lemma�

Lemma ��� Let f�x� � C�p���� ��� There exists a C�p������ continuation of f�x� that is
allowable� This is

f�x� �

�
f�x�� � � x � ���Pp

j��
f �j����

j� �x� ��j
�
��x� ��� ���� � 	 x�

where ��x� is any neutralizer function with � � �� 	 �� 	��

��



In the sequel� in situations in which f�x� is de�ned only in ������ we shall assume a
continuation of the above form without any further comment�

To obtain the classical Euler�Maclaurin expansion for ����� for f�x� � C�p���� ��� we
de�ne its continuation as just described with �� � �� Then we may set


f�x� � f�x� ���

and clearly

S�f��� � S�f���� S� 
f����

We apply the result of Theorem ��� to both terms� Since � � �� we readily �nd


S�f��� � F ���� 
F ���

�
NX
n��

���n� ��

�n��
�f �n����� f �n�����

�
�

��i

Z c��i�

c��i�
�F �p�� 
F �p����p� x��p��dp� �����

Here we have denoted the Mellin transform of 
f�x� by 
F �p�� Since f�x� is regular and
allowable� it follows that

F ���� 
F ��� �
Z �

�
�f�x�� f�x� ���dx �

Z �

�
f�x�dx

and the zeta function in the summation may be re�expressed in terms of Bernoulli polyno�
mials� using ����� above�

An expansion for the error functional when there is an integrand singularity at one
end of the interval is obtained by using the same procedure� Let f�x� � x�g�x�� where
g�x� � C�p���� ���

Let � �� negative integer and � � �� Then� applying Theorem ���� we �nd


S�f��� � S�f���� S� 
f���

� F ���� 
F ���

�
NX
n��
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�n����
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NX
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���n� ��

�n��

f �n����

n


�
�

��i

Z c��i�

c��i�
�F �p�� 
F �p����p� ���p��dp� �����

Since � �� negative integer� the �rst term here is

F ���� 
F ��� �
Z �

�
� f�x�dx�

Z �

�
f�x�dx

�

Z �

�
� f�x�dx�

When � � ��� this is Navot�s result� When � 	 �� and is not an integer� this is Ninham�s
result� This derivation is the same for these two cases�

��



When � is a negative integer� say� �m � �� where m is a nonnegative integer� the
expansion given above has to be adjusted in accordance with Theorem ���� Doing this leads
to the following replacement for ������ Here� f�x� � x�g�x� � g�x��xm���


S�f��� �

Z �

�
� f�x�dx�

g�m����

m

���� �

g�m����

m

log�

�
NX
n��
n��m

���n �m� �� ��

�n�m
g�n����

n

�

NX
n��

���n� ��

�n��

f �n����

n


�
�

��i

Z c��i�

c��i�
�F �p�� 
F �p����p� x��p��dp� �����

We have now treated all values of �� When � is a negative integer� expansion ����� �with
the log� term� is valid� Otherwise� the expansion ����� is valid� The regular expansion
����� coincides with ����� when � is set to zero�

One may obtain variants of these results relating to an integrand function that has a
singularity at both ends of the �nite interval� Let

f�x� � x���� x��g�x��

where g�x� � C�p���� ��� To handle this� we re�express f�x� as follows�

f�x� � f�x���x�
�

�
�
�

�
� � f�x���� ��x�

�

�
�
�

�
��

� f��x� � f��x� � f��x� � f���� x��

Then�

S�f��� � 
S�f���� � 
S�f���� � 
S�f���� � 
S�f���� ���

Geometrically� we have replaced the original f�x� by two functions whose support is localized
to ��� ��� and to ���� ��� respectively ��i � i���� The second of these has been re�ected about
x � �

� � This has left the two functions f��x� and f��x�� both of which have a singularity
at x � � but are allowable in C������ It remains only to apply Theorem ��� to f��x� and
f��x� separately� Setting

g��x� � ��� x��g�x�� g��x� � x�g�x��

we obtain
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Here�

F���� � F���� �
Z �

�
� f�x�dx�
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In the case that one or both of � or � are negative integers� say �m � � or � �m � ��
respectively� there is an adjustment of the same type as was made to obtain ����� from
������ In the extreme case that both are negative integers� the sums over n are adjusted by
omitting the terms for which n � m and n � �m� respectively� and by including two sets of
extra terms each set being of the type speci�ed in Theorem ����

� Concluding Remarks

In this paper we have presented a uni�ed approach for deriving the one�dimensional Euler�
Maclaurin expansions for quadrature error functionals de�ned on a �nite interval when the
integrand function has an algebraic singularity� of any order� at one or both both endpoints�
We have been able to include� in a general framework� the case of nonintegrable singularities�
that is� integrals de�ned as Hadamard �nite�parts�

Our approach is based on properties of the Mellin transform� in particular� using integra�
tion by parts� we have continued an investigation initiated by Verlinden into the sequence
of poles in the negative real axis� Critical to our theory is the nature of the Laurent ex�
pansion at each pole� We have shown that each individual term in this expansion has a
simple integral representation in terms of a Hadamard �nite�part integral� This is an exten�
sion of the theory recently developed by Verlinden to higher�order terms and nonintegrable
singularities�

As mentioned in the introduction� a refreshing feature of this theory is that it treats
all possible cases of singularities in a fundamentally uniform way� The di	erent expansions
arise simply as a result of a technical di	erence in the formula required to calculate the
residues at the poles of the Mellin transform�
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